生成式預訓練模型(Generative Pre-Training, GPT)是基於變形金剛(transformer)的大語言模型(Large Language Models, LLM),它包含一千七百五十億個模型參數,透過OpenAI公司開發的應用程式介面(Applications Programming Interface, API),任何人均可存取這個大語言模型,實現模型作為服務(model-as-a-service)的人工智慧民主化。
變形金剛模型改變了自然語言處理(Natural Language Processing, NLP)與理解(Understanding, NLU)的樣貌,它開啟了人工智慧的新時代,成為語言模型、聊天機器人、個人助理、問題回答、文本分類、文本摘要、語音轉文字、情感分析、機器翻譯、命名實體辨識等的支柱。
本課程「自然語言處理ChatGPT大語言模型原理與實作」從卷積與遞歸神經網路基礎開講,細說傳統自然語言模型的發展瓶頸與沿革,靜態與動態詞嵌入重要概念,漸次引入模仿人類閱讀學習記憶的並行注意力機制,最後說明摒除人工標記束縛的基於變形金剛的雙向編碼器表示技術(Bi-directional Encoder Representations from Transformers, BERT),幫助學員理解ChatGPT背後大語言模型的原理,並運用Python語言實作NLP/NLU任務,進一步觸發學員思考工作場域中的新應用。
課程提供【數位同步學習】報名方案,歡迎學員報名參加。